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ADMITTING THE INADMISSIBLE: ADJOINT FORMULATION FOR INCOMPLETE

COST FUNCTIONALS IN AERODYNAMIC OPTIMIZATION *

EYAL ARIANt AND MANUEL D. SALAS$

Abstract. We derive the adjoint equations for problems in aerodynamic optimization which are improp-

erly considered as "inadmissible". For example, a cost functional which depends on the density, rather than

on the pressure, is considered "inadmissible" for an optimization problem governed by the Euler equations.

We show that for such problems additional terms should be included in the Lagrangian functional when

deriving the adjoint equations. These terms are obtained from the restriction of the interior PDE to the

control surface. Demonstrations of the explicit derivation of the adj0int equations for "inadmissible" cost

functionals are given for the potential, Euler, and Navier-Stokes equations.

Key words, adjoint, aerodynamic optimization, Euler, Navier-Stokes, optimal shape.

Subject classification. Applied and Numerical Mathematics

1. Introduction. In recent years there has been a growing interest in solving optimization problems

governed by the Euler and the Navier-Stokes (NS) equations (for example [1]-[10]). The new interest in

this classical field is due to advances in computer performance and improvements in algorithms for the

numerical solution of the flow equations. Among the many optimization methods that are being pursued,

the Lagrange multiplier method or adjoint method is particularly attractive, because of its efficiency for

problems with many design variables. The adjoint method is based on a variation analysis of the Lagrangian

and requires that the variation vanishes at the optimum. This necessary condition yields an optimality

system of coupled PDEs consisting of the state equation, the costate or adjoint equation, the optimality

condition, and boundary conditions for the state and costate equations.

Recently, Anderson and Venkatakrishnan [8] reported some difficulties in the derivation of boundary

conditions for the costate equation for certain cost functionals. The same problem was later reported in [9]-

[10]. In [8], for example, it is concluded that for aerodynamic optimization problems which are governed by

the compressible Euler flow equations, only cost functionals that depend solely on the pressure, F -- F(p), are

admissible; and for viscous flow, using the compressible (NS) equations, only cost functionals which involve

the entire stress tensor (e.g., drag) are admissible. As stated in [8], the difficulty with the "inadmissible"

cost functionals stems from the need for a suitable balance between the different terms in the variational

form of the Lagrangian; for some cost functionals such a balance does not exist and the requirement that

the variation of the Lagrangian vanish does not result in a boundary value problem for the adjoint variables.

In [9], the authors suggest, for the compressible NS with adiabatic boundary condition on the solid wall,

to introduce a contribution into the cost functional which depends on the temperature so that appropriate

cancellation in the variation of the Lagrange functional will occur. In [10], the authors concluded that no

other choices of cost functionals, other than those suggested in [8], lead to a well-posed problem.

From the theory of functional analysis costate variables exist for all cost functionals [11]. This, however,
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is not the same as saying that all cost functionals lead to a proper boundary value problem for the costatc

equation, which is what we mean by an "admissible" cost functional.

In this paper, a general method is presented for formulating proper boundary value problcms from cost

functionals considered "inadmissible" in the literature. The method avoids redefining, or introducing new

terms in, the cost functional. Thc term "inadmissible" is obviously incorrect. We claim that for so called

"inadmissible" cost functionals additional auxiliary boundary equations are needed in the Lagrangian. These

relations are obtained from the restriction of the interior PDE and its derivatives (up to the highest order

possible) to the boundary. With these additional relations, proper cancellation of terms in the variation of

the Lagrange functional can be obtained for any well defined cost functional. However, there is value in

distinguishing those cost functionals that lead to a proper boundary value problem with out the need of

auxiliary boundary equations from those that do not. To that end, we define complete-cost functionals as

those that lead to a well posed boundary value problem of the costate equation with out need for augmenting

the Lagrangian functional with auxiliary boundary equations and we define incomplete-cost functionals as

those requiring the use of auxiliary boundary equations.

The paper is organized as follows. In §2 we begin with the potential equation and an admissible cost

functional. This example is intended to illustrate the problem that arises later with the cost functional
o•

containing _ which is also treated in this section. In §3 the adjoint equations are derived for a cost

functional containing the density, p, for shape optimization problems governed by the compressible Euler

equations. In §4 the adjoint equations are derived for a cost fimctional containing only the pressure, p,

for shape optimization problems governed by the compressible NS equations. In §5 we discuss our findings

and make some concluding remarks. Appendix A contains the definition of the Euler Jacobian matrices.

Appendix B contains identities of polar coordinates which are used extensively in §§3-4. Appendix C contains

a demonstration of the adjoint derivation on a more complex cost functional, than the one presented in §4,

for shape optimization problems governed by the compressible NS equations.

2. The Potential Equation. Let _t bca two dimensional domain confined in the area between two

circles with radii R1 < R2. We denote by F the circle with radius R1 and by 01"t - F the circle with radius

R2. Let f*(_) be a given L2(F) function defined on the boundary F, and let the function a(_), defined on

F, be the design variable.

2.1. An "Admissible" Cost Functional. Consider first the derivation of the adjoint equation on a

Dirichlet cost functional using the standard procedure. The minimization problem is defined as follows:

minFl(¢)-- fr (¢- f*)2da(2.1)

subject to

(2.2)
A¢----0 inft

oa
On = -'_ on F

¢=¢o on 0_- F

where n and t, respectively, denote the outer normal and tangential directions on the boundary F. The

definition of the state equation (2.2) assumes the following smoothness properties:

a E H I(F)

(2.3) ¢ • HI (_),



whereH k denotes the Sobolev space of order k (see [12]). The necessary conditions for a minimum are

derived with the adjoint method. We introduce the Lagrange multipliers A defined on the domain f_,

defined on part of the boundary F, and _ defined on the rest of the boundary al2 - F. In terms of the

Lagrange multipliers, a Lagrangian is defined by:

The variation of the Lagrangian is given by:

The term containing ¢ on 0f_ - F was omitted since ¢ is fixed on that part of the boundary (see Eq.(2.2))

and therefore its variation vanishes.

The necessary conditions for a minimum are obtained by requiring that the integrands in (2.5b) vanish.
~

Matching the terms that multiply ¢, and those that multiply _-_, results in the following equations:

¢(_): AA=0 in
oA__(r): _ - -2(¢-/*) on r

(r): ¢= _ onr
(0_ - r) : _ = 0 on 0_ - r

_(r): _ = 0 onr.

Therefore, the costate (adjoint) boundary value problem is defined by

AA = 0 in

(2.6) oh _- -2(¢- f*) on r
A=0 on 0_ - F,

with the Frdchet derivative of the cost functional with respect to a given by

(2.7) dF1 Oh
da - cOt on F.

2.2. An "Inadmissible" Cost Functional. Suppose that we want to minimize a cost functional that

depends on the second normal derivative on the boundary. Then the minimization problem is defined as

follows:

(2.8) mjnF_(_)= - f-j _

subject to Eq.(2.2). However, the definition of the cost functional (2.8) assumes that the second normal

derivative of ¢ on the boundary exists and is in L2(F). This is not consistent with the smoothness requirement

of ¢, (2.3), unless we additionally assume that a is smoother than required by the state PDE, i.e.,

(2.9) a e H=(r)
¢ E H_ (f_).



If wederivethenecessaryconditionsfor aminimumaswedid for theDirichletcostfunctional(2.1),then
thevariationoftheLagrangianisgivenby:

(Aspreviouslydiscussed,thetermthat contains¢ onthe "far-field",0f_ - F, was omitted.)

In the previous example, we saw how the first and third terms in the variation of the Lagrangian (2.5a)

combined to give a boundary condition for 0_ along F. In this example, the first term in (2.10), the term_nn
02-

with -_, can not be combined with any of the other terms on the boundary F and, hence, we can not obtain

a boundary condition on F for the costate equation. A cost functional exhibiting this behavior was termed

"inadmissible" in the literature [8]. However, since the state equation (2.2) is linear, ¢ depends on c_ linearly,

the cost functional F2 is a quadratic in _. A quadratic cost functional has a unique minimizer, thus the cost

functional F2 is in-fact admissible.

In the next subsection, we show how to overcome this problem using an auxiliary boundary equation.

2.3. Auxiliary Boundary Equation (ABE). For convenience, let us introduce polar coordinates

(r, 0). In polar coordinates, thc restriction of the interior PDE (2.2) to the boundary F results in the

following ABE (assuming the consistency requirements of (2.9))

(2.11) i% Or + + _-_t_-_ = 0 on F.

Here we assume that _ = -fi is perpendicular to the boundary, pointing into the domain, and R1 is the

radius of curvature. By Eq.(2.11) we get (dt = R:dO)

. . 02-

(2.12) -_: (-_-7_-_-t) onr,

which can be used to replace _ in the variation of the Lagrangian. Integration by parts, along the boundary,

of the term containing tangential derivatives results in a variational form of the Lagrangian which contains

only the naturally occurring boundary terms (¢ and _).

Another way to use Eq.(2.11), which leads to the same result, is by adding it to the Lagrangian with a
_ - 82-

new Lagrange multiplier 7. Then/_ is augmented with the term frr_ ( - _ _r - _ - _-t ) da which results

in the following adjoint equations on the boundary:

(2.13) $(r) : _ _ _ :-°__ 0
-_(r) : :_-_+¢=0.

Therefore, the adjoint equations can be written in the following "strong" form:

(2.14)

AX=0 in f_

or = 2 - on F

)_=0 on 0f_ - F.

The Prdchet derivative of the cost functional F2 with respect to _ is then given by

_F2 0¢ oh 2 { 03¢ of*
(2.:5) -_ = Yi = gi - _ _o-_t -_ ) o. r.



In the same manner other cost functionals can be treated by taking (if necessary and consistent with

the smoothness assumption of the cost functional definition) higher derivatives of, A¢ = 0, restricting the

resulting equations to the boundary and adding them to the Lagrangian with additional Lagrange multipliers.

We add a remark on the required smoothness of the Lagrange multipliers. If we insist in solving the

adjoint equation in its "strong" form (2.14), then the smoothness requirement of the state solution should

be even stronger than (2.9) (also if(s) should be smoother than L2(F)). This requirement can be relaxed

if the adjoint equations are solved in a weak formulation, for example, by finite elements [11]. For future

reference we give here the following definition.

DEFINITION 2.1. We define a complete-cost functional as one that leads to a boundary value problem

of the costate equation with out the need for augmenting the Lagrangian functional with auxiliary boundary

equations. Otherwise, the cost functional will be termed as incomplete.

In the next sections we treat similarly higher level models of fluid dynamics PDEs. In these cases, the

functional analysis of the smoothness properties of the state equations are not as obvious as in the above

example.

3. The Euler Equations. For simplicity the derivation is done in two dimensions. Let U denote the

vector of state variables:

(3.1) U = (p, pu, pv, pE) T,

where we use the following notation: p denotes the density, ff = (u, v) denotes the velocity vector, and E

denotes the total specific energy.

The Euler equations are given by (conservative form)

div(pff) = 0

(3.2) div(pff @ ff + pI) = 0

div(pffH) = 0

where if- ff = 0 on the solid wall F, and with additional appropriate boundary conditions on the far-field.

(The above system, in the interior, can be written in an equivalent form in terms of the Jacobian matrices,

V(._[7) = 0, where ._ = (A, B) denote the Jacobian matrices given in appendix A.)

The following are state relations for the pressure, p, and the total enthalpy, H:

vlul(3.3) P=(7-1)pE-_ "2
H = __7__v+ lal2

•_--lp 2 "

3.1. Natural Boundary Terms. Integrating by parts the Euler equations results in a term containing

the pressure on the boundary:

(3.4) f_ V(.4[?)df_ =/aep(0 , nl, n2, 0) Tdo',

(in polar coordinates nl = -1 and n2 = 0), therefore any minimization problem that contains terms other

than the pressure will result in non-canceling terms in the variational Lagrangian.

3.2. Example of an Incomplete Cost Functional. The following cost functional is incomplete (the

design variable is the shape of the solid wall F):

(3.5) F(p) = [(p - p*)2da.
Jr



The Lagrangian is given by

(3.6) £: = fr(P - P*) 2da + f_ ATv('4U)dfl + fr _(ff" _)da+ far-field terms,

where ,_ is the vector of costate variables,

(3.7) /V,= ()`1,)`2, ),3, )`4) T

and we denote by _ the adjoint "velocity" vector, i.e.,

(3.s) =

The variation of the Lagrangian is given by

(3.9) _ = fr 2/5(p - p*)da + fn _(ATp,= + BT._y)d_ + frfA2dcr + fr &g(U, 5.)da+ far-field terms,

which results in non-cancellation of terms in _, since the cost functional is not given in terms of the natural

boundary term p 1.

However, in general we can write

(3.10) p = p(p, s)

where s is the entropy and, in particular, on the surface F we can write

(3.11) p = p(p)

in the absence of shock waves 2, since the entropy is constant along the streamline wetting the surface.

Hence, we know that we can overcome this problem. In the next section we derive the adjoint equations, for

the incomplete cost functional (3.5), with a general procedure, along the lines of §2.3.

3.3. Auxiliary Boundary Equatlons. As in the potential problem we derive auxiliary boundary

equations (ABEs) by restricting thc interior PDEs to the boundary. For simplicity, we examine the result-

ing equation locally around a point on the b0uncla'ryand_-use polar coordinates. Fig.(1) depicts the ]ocai

coordinate system. Throughout the paper we use the unit tangential vector t'on the boundary instead of 8.

Note that on the boundary, F,

0 1 0

(3.12) O-t = R ¢30"

Also, in polar coordinates the components of the velocity vector _7will be denoted by _7 = (ur, u,) where

u_ = ft. _" and ut = _7.8; similarly, the components of the adjoint "velocity" vector _ will be denoted by

= ()`_,)`t) where )`r = _" r' and )`, = _- _.

3.3.1. The Continuity Equation. In polar coordinates, on the boundary, the continuity equation is

given by (V(frE) = 0) .......

0 0

(3.13) _rr (purl + -_(pu,) = O.

Also higher order derivatives of the continuity equation can be taken and restricted to the boundary and

are considered auxiliary boundary equations, as long as the solution in the interior is smooth enough so that

these derivatives exist.

1In fact, for shape optimization problems, as we discuss here, the variation of the Lagrangian includes more terms on the

boundary F that depend on _. _. However, these terms contribute only to the gradient term fr &g(U' .E,)da and therefore do
not play a role in the derivation of the adjoint boundary value problem. For simplicity we do not discuss these terms in this

paper.
21n the presence of shocks, it is still valid to write p --- p(p) in a piecewise sense between shocks using the Rankine_Hugoniot

conditions to connect the piecewise regions along the streamline wetting the surface.



FIG. 1. The local coordinate system around a point on the boundary.

3.3.2. The Momentum Equations. The momentum equations, V • (pff ® ff + pI) = 0, in polar

coordinates are given by (see Eq.(B.4))

o 2 _ 10, u _ .__ _=0
(3.14) _7(PUr) + r + ;_-_(pUr _/- r + Or

O (purut ) 2__r__ 1 a, u 2, op = O.+ _ + _-_(P t) + a_

Using the solid wall boundary condition and the relation (3.13), the restriction of the above to the boundary

results in

_ed+ =0
(3.15) R or

^u o_ o_ =0,P t at 3-- o_

where R denotes the local radius of curvature (see Fig. (1)).

Higher order equations can be derived by taking derivatives of equations (3.14) and restricting them to

the boundary.

3.3.3. The Energy Equation. The energy equation in polar coordinates is given by iV" (p_TH) = 0)

1 a 1 c9
(3.16)

- 0-0 (putS) + - X (pru_U) = O.
r r

Using the solid wall boundary condition and the relation (3.13), the restriction of the above to the boundary

results in

(3.17) --0H=0 or H=constonF.
Ot

3.3.4. The Derivation of the Adjoint Equations. The definition of the cost functional (3.5) con-

tains an implicit assumption that the restriction of the density state variable to the solid wall is continuous

(and also that p(F) E L2(F)). However, in general the density is not continuous in the direction perpendicu-

lar to streamlines while the pressure, p, and the normal velocity, ur, are always continuous in that direction

[13]. The new assumption on the smoothness of the density is introduced into the Lagrangian by adding the

ABEs:

_r 0 pu_ Op _?3(pu OUt Op _?4H]da

where (_1,''', I]4) are additional Lagrange multipliers. For the cost functional (3.5), the restriction of the

continuity and first momentum equations are not required and therefore we choose _h = v]2 -- 0. The

variation of the enlarged Lagrangian, l: +/:ABe, yields three adjoint equations on the boundary for _, r]3

and r/a:

(3.19)

#(r):
_t(r):

+ 2(p-p*)= 0
_^_-_ - o_(putVa) + _4ut = 03P Ot



where wc have used the relation 3

"7- 1 - p'2P + utfit = 0.

The above system can be solved by solving the first two PDEs in (3.19) for 73 and 774 and substituting the

result in the third equation which is the transpiration boundary condition for A.

4. The Navier-Stokes Equations. The compressible NS equations are given by

div(pg) = 0

(4.1) div(p_7 ® if) = div(a)

div(ea) + div(q")= di ( g)

where the stress tensor, a, is given by

a = -pI + #2div(g)I + #def(_,

and I denotes the unit tensor, def = grad + grad T, and # and #2 are the first and second viscosities,

respectively (#2 + 2p _- 0). The vector g denotes the heat conduction vector, g = -kgrad(T), where T3

denotes the temperature, and k denotes the coefficient of conductivity and will be set equal to a constant.

The total energy satisfies e = p_21_ + p_-_.

The solid wall boundary conditions are given by :

g=0

(4.2) aT + b-_n = c

where a, b and c are parameters (in this paper we set a = c ----0 and b -- 1, resulting in the adiabatic

wall boundary condition).

4.1. Natural Boundary Terms. For simplicity we will denote the system of NS equations by V.F = 0.

where F consists of the flux vectors. Integration by parts of the compressible NS equations results in the

following boundary terms:

(4.3) _ (V " ff)dl_ = _o (O, (aff)l , (aff)2, 0)T da.

Therefore, the natural boundary terms for the compressible NS equations are the total fluid force components,

(aff)j. (In other words, the only complete cost functionals are those which measure lift or drag.)

4.2. Example of an Incomplete Cost Functional. Let us take, for example, the following cost

functional which is incomplete (here, as in the previous section, the design variable is the shape F) since its

variation is not given in terms of the force components in (4.3):

= f(p - p') do.(4.4) F(p)

The cost functional (4.4) was treated previously in [14] by neglecting a term in the Lagrangian and in [8] by

modifying the cost functional. A demonstration of the adjoint derivation on a more complex cost functional

is given in appendix C.

3we assume that the term defined on the endpoints of F which re_u|ts from the integration by parts, fr _3 ao-_tda, is equal to

zero, i.e., _3p(0F +) - _3p(0F-) = 0.



The Lagrangian is given by

• rOTdvr(4.5) F. = fr(P - P*) 2da + fn _T (V" fi)df_ + fr _-_ _- fr ¢. ffda+ far-field terms.

The variation of the Lagrangian is given by

= interior terms + fr 2_(p - p*)da+

(4.6) Ion [- ¢k_2 + _ ^4 _ _.g-__,_r + or " , + + fr

o_ does not contribute to the adjoint equations (assuming adiabatic boundary conditions) andThe term _-

therefore will be omitted (by the same reasoning the term containing the variation of ff on F and the variation

of the far-field terms vanish)• Also note that the variation in T can be transformed to variations in p and

p using the equation of state, T = _o' The cost functional (4.4) is considered incomplete since the term

determines the adjoint boundary condition Ar = 0. As a result we do not obtain a boundary valueOr

problem representation of the adjoint equations.

4.3. Auxiliary Boundary Equations.

4.3.1. The Continuity Equation. Since the boundary condition on F implies that °(put) = 0, we

get from the continuity equation that (see Eq.(3.13))

(4.7) Our
0---_ =0.

4.3.2. The Momentum Equations. Let us write the momentum equations in the form

div(pff ® if) = div(cr) = div(-pI) + div(_-).

The term div(pff ® ff + pI) is given in polar coordinates in Eq.(3.14). Taking the limit to the boundary we

get that

lim div(pff @ if) = 0.
_--*F

The term r in polar coordinates is given by

(#2div(ff)+2#_ [o___ _-__' )

- r *
(4.8) r = #2div(ff)I + #def(ff) = [ou. _ - ou___'_

#_:--_- - r -t- or ) #2div(ff) + 2#(-_t + -_:)

Evaluating div(r) on the boundary and using the identities

lime-_r div( g) = 0

(4.9) lim_r ° div(ff) = -_ ot Or

results in the following auxiliary momentum boundary equations (see Eq.(B.4))

or+ .. - ". o'.._ . o_ o o,= o
(4.1o) o,..- #-a--_/- _# Or = 0.



4.3.3. The Energy Equation. The energy equation is given by

div(eff) + div(q-) = div(aff).

Using the relation

and taking its divergence in polar coordinates we get

(4.11) lim div(eff) = O.
x_---_F

The term div(q-) = -kAT satisfies (assuming an adiabatic boundary condition)

, 3
(4.12) e--rlimdiv(q-) = -k(-ff_r2 + Ot2/.

The term aft and its tangential derivatives on the boundary are zero, therefore only its radial derivative

is considered:

(4.13) lim div(aff) = #( Out _ 2
_r _, Or / "

Eqs. (4.11)-(4.13) imply the following auxiliary energy boundary equation

.102T 02T _ / Out _2
(4.14) --k(_-_r2 + Ot 2 ] - #_,Or ) = O.

4.3.4. The Derlvatlon of the Adjoint Equations. As in the Euler case, we add the ABEs to the

Lagrangian:

_r 1 019 OUt 02_tr 021it "_k Or / p Ot Or 2_-g_-r2- _-g-_)

02u_ 1 Out _ I z O2T 02T _ Out 2
(4.15) -t-r/3 (_--_ -it Or s -R#--_r ) + _a [ - k _-_r2 + -_ ] - # (-_r ) )Ida.

However, for the cost functional (4.4) we need only the first term in Eq.(4.15) and therefore we choose

rt2 = _ = rl4 = 0:

[` + [-ABE = interior terms + fr 215(p -- p*)da+

a__:/ _tr #At + iSAr] dg fr &gl(_,/_ '(4.16) fort [- TkO_ + or _,rh + _#Ar) + + rh)da.

The variation of the enlarged Lagrangian, L: + 12ABE, yields the following equations on the boundary (using

fP/ 4
Or k-- I : 771 -J- g _t'_r = 0

/5(F): 2(p-p*)+A_ k 1__ =0

(4.17) _¢(r) : .x_ = 0
k 1 o____

_(r) : _-_ _ o_ = 0.

The resulting adjoint equations on the solid wall are given by (See Eq.(4.2))

x_ = -2(p - p')

(4.18) A_ = 0

db-¢ _- 0.
dn

l0



Note that the first equation in (4.17) determines the auxiliary Lagrange multiplier _1:

4 A 8
(4.19) _71-----5# r =- 5#(P - P*).

That Lagrange multiplier is affecting the gradient, gl = gl(U,A, _71), since the variation of the continuity

auxiliary boundary equation (4.7) with respect to a change in the shape, F, results in variational boundary

terms that multiply only the term &.

5. Discussion and Concluding Remarks. We present a method for the derivation of the costate

equations for problems in which the cost functional does not lead to a proper boundary value problem for

the costate equation, when derived in the standard way. We define such cost functionals as incomplete;

it is required to "complete" the Lagrangian with auxiliary boundary equations in these cases in order to

derive a boundary value problem of the costate equation. We demonstrate the method on three problems

involving the incomplete cost functionals using the potential, the compressible Euler, and the compressible

NS equations. Our aim is to give the costate equations a representation of a boundary value problem and

not to treat rigorously the issue of existence of solutions to the resulting system of costate equations. We

note that for all cost functionMs it is possible to derive the adjoint equations in the discrete level in the

standard manner; the problem of incompleteness exists only in the PDE level. The relation between the

costate equations that we derive and the discretely derived costate equations in the limit of mesh-size going

to zero is beyond the scope of this paper.
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(A.1)

Appendix A. Definition of the Euler Jacobian Matrices.

0

__2 + _(u 2 + v2)
A=

--UV

-u(TE- ('y- l)(u 2 + v2))

1 0 0

(3 - _)u -(_ - 1)v _ - 1
v u 0

"/E- 2:z_(3u 2 + v 2) -('y- 1)uv 7u

(A.2) B

0 0

--UV V

-v 2+ 2:_(u 2+v 2) -(7-1)u

1)(u + v21) 1)uv

Appendix B. Identities of Polar Coordinates.

I 0

u 0

(3 - _)v _ - 1

rE - _ (u 2 + 3v 2) "yv

(B.1)

(B.2)

lOf_g,od(,,)= oe,

OUr 1 Out Ur
div( ff) = -_r + r _ + --r

(B.3)

If A = Aij is a tensor then

(n.4)

( a___ !a_._ __ )
grad(g) = or r aa r

o,, !o_, + __= "
Dr r OB r

laA__4oa a_a)
_ + n_:a +__r O0 -- r

divA = aa__4ax ..}_ _ _[_ 1 aAaa _ "Or r 7 ao + r

12



Appendix C. Demonstration of the Adjoint Derivation on a Complex Cost Functional

Governed by the Compressible Navier-Stokes Equations.

Let us take, for example, the following cost functional which is incomplete

The Lagrangian is given by

(C,2)£ = fr (P- P') 2da ÷ fr (_-_n- S*) 2dCr-t- f_ _T. (V. F)d" + fr (_-nT_ + fF z_, ffa+ far-field terms,

The variation of the Lagrangian with respect to a change in the shape, &, is given by

£--interior terms + fr 2_(p - p*)da + fr 2_ (_ - f*)da+

Or + _r kA4 + -_-r3/z r -{- -_-r #At

For the cost functional (C.1) we need only the first two terms in Eq.(4.15) and therefore we choose _/3 =

rl4 = O:

_ [ { cqftr _ 0/5 12 cOpOut 1 cO_Out 1 cOp_£Lt cO2fir c32_t _

The term -_ doesn't cancel with any other term in the Lagrangian and, therefore, we add another ABE

by taking the radial derivative of the continuity equation,

cO2 cO2

(c.5) cO,._(p_) + b-T_(_) = 0.

and restricting it to the boundary:

02u,. cOpOut cO2ut(C.6) _-.rlim div(pg) = p--_Vr2 + O--t cO---r+ P-O-__ = O.

We can further add to the variation of the Lagrangfan (Eq.(C.3) added with Eq.(C.4)) the variation of the

residuals of (C.6) with a Lagrange multiplier _/5:

r /_O2u,. O2fi,. O_ cOut cOPcOrot - cO2ut . cO2fit"_,(C.7) _ne'w=_"{-_ABE"{- r/5 _P-_2-r2 + P-o--_-r2+ c3-_CO--r-+ CO--tcO--r-+P-ffr-_+P-Or-r-r-r-_) aa"

The resulting adjoint equations on the boundary are given by 4 (using T= _-1(- _fS+ 1/5))

_(r): -2,_ + ,_p = 0

/5(F): A_ k :_=0
"f--1 p Dr

10X, 1 OpOu, ( I_ T]5_ cO ( cOu ) _ O___(r): 2(p-p*)+_k--___-. -_,=_-,= ° _,or_+ - : w_ +,_o.0t =0.

The above system can be solved by first solving for rh, r/2 and _/5 from the first three equations and then

substituting the result in the last three equations, which are the desired adjoint boundary conditions.

awe assume that the terms defined on the endpoints of F which result from the integration by parts are equal to zero.
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